
ICT 5103: Database Design and
Management

Lecture 3

Instructor: Samin Rahman Khan
Lecturer, IICT, BUET

Institute of Information and Communication and Technology
Bangladesh University of Engineering and Technology

1

The Relational Model

The slides were taken from the following book

© Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

2

Why Study the Relational Model?

● Most widely used model.
○ Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

● “Legacy systems” in older models
○ E.G., IBM’s IMS

● Recent competitor: object-oriented model
○ ObjectStore, Versant, Ontos
○ A synthesis emerging: object-relational model

■ Informix Universal Server, UniSQL, O2, Oracle, DB2

3

Relational Database: Definitions

● Relational database: a set of relations
● Relation: made up of 2 parts:

○ Instance: a table, with rows and columns.
■ #Rows = cardinality, #fields = degree / arity.

○ Schema: specifies name of relation, plus name and type of each
column.
■ E.G. Students(sid: string, name: string, login: string, age: integer,

gpa: real).
● Can think of a relation as a set of rows or tuples (i.e., all rows are distinct).

4

Example Instance of Students Relation

● Cardinality = 6, degree = 5, all rows distinct

5

 Relational Query Language

● A major strength of the relational model: supports simple, powerful
querying of data.

● Queries can be written intuitively, and the DBMS is responsible for
efficient evaluation.
○ The key: precise semantics for relational queries.
○ Allows the optimizer to extensively re-order operations, and still

ensure that the answer does not change.

6

 The SQL Query Language

● Developed by IBM (system R) in the 1970s
● Need for a standard since it is used by many vendors
● Standards:

○ SQL-86
○ SQL-89 (minor revision)
○ SQL-92 (major revision)
○ SQL-99 (major extensions)
○ SQL:2003
○ SQL:2006
○ SQL:2008
○ SQL:2011
○ SQL:2016
○ SQL:2019
○ SQL:2023 (current standard)

7

The SQL Query Language

● To find all 18 year old
students, we can write:

SELECT *
FROMStudents S
WHERE S.age=18

● To find just names and
logins, replace the first line:

SELECT S.name, S.login

8

 Querying Multiple Relations

● What does the following query compute?

SELECT S.name, E.cid
FROMStudents S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

● Given the following instance of Enrolled (is
this possible if the DBMS ensures
referential integrity?):

● we get:

9

 Creating Relations in SQL

● Creates the Students relation.
Observe that the type (domain)
of each field is specified, and
enforced by the DBMS
whenever tuples are added or
modified.

● As another example, the
Enrolled table holds
information about courses that
students take.

10

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa REAL)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Destroying and Altering Relations

 DROP TABLE Student

● Destroys the relation Students. The schema information and the tuples
are deleted.

 ALTER TABLE Students
ADD COLUMN firstYear: integer

● The schema of Students is altered by adding a new field; every tuple in
the current instance is extended with a null value in the new field.

11

 Adding and Deleting Tuple

● Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

● Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

12

Integrity Constraints (ICs)

● IC: condition that must be true for any instance of the database; e.g.,
domain constraints.
○ ICs are specified when schema is defined.
○ ICs are checked when relations are modified.

● A legal instance of a relation is one that satisfies all specified ICs.
○ DBMS should not allow illegal instances.

● If the DBMS checks ICs, stored data is more faithful to real-world
meaning.
○ Avoids data entry error, too!

13

Primary Key Constraints

● A set of fields is a key for a relation if:
a. No two distinct tuples can have same values in all key fields, and
b. This is not true for any subset of the key.
● Part 2 false? A superkey.
● If there’s >1 key for a relation, one of the keys is chosen (by DBA) to

be the primary key.
● E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a

superkey.

14

 Primary and Candidate Keys in SQL

● Possibly many candidate keys (specified
using UNIQUE), one of which is chosen
as the primary key.

● “For a given student and course, there is
a single grade.” vs. “Students can take
only one course, and receive a single
grade for that course; further, no two
students in a course receive the same
grade.”

● Used carelessly, an IC can prevent the
storage of database instances that arise
in practice!

15

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, sid))

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Foreign Keys, Referential Integrity

● Foreign key : Set of fields in one relation that is used to `refer’ to a tuple in
another relation. (Must correspond to primary key of the second relation.)
Like a `logical pointer’.

● E.g. sid is a foreign key referring to Students:
○ Enrolled(sid: string, cid: string, grade: string)
○ If all foreign key constraints are enforced, referential integrity is

achieved, i.e., no dangling references.
○ Can you name a data model w/o referential integrity?

■ Links in HTML!

16

Foreign Keys in SQL

● Only students listed in the Students relation should be allowed to enroll for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

17

 Enforcing Referential Integrity

● Consider Students and Enrolled; sid in Enrolled is a foreign key that
references Students.

● What should be done if an Enrolled tuple with a non-existent student id is
inserted? (Reject it!)

● What should be done if a Students tuple is deleted?
○ Also delete all Enrolled tuples that refer to it.
○ Disallow deletion of a Students tuple that is referred to.
○ Set sid in Enrolled tuples that refer to it to a default sid.
○ (In SQL, also: Set sid in Enrolled tuples that refer to it to a special

value null, denoting `unknown’ or `inapplicable’.)
● Similar if primary key of Students tuple is updated.

18

Referential Integrity in SQL

● SQL SQL/92 and SQL:1999
support all 4 options on deletes
and updates.

● Default is NO ACTION
(delete/update is rejected)

● CASCADE (also delete all tuples
that refer to deleted tuple)

● SET NULL / SET DEFAULT
(sets foreign key value of
referencing tuple)

19

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, sid)
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Where do ICs Come From?

● ICs are based upon the semantics of the real-world enterprise that is
being described in the database relations.

● We can check a database instance to see if an IC is violated, but we can
NEVER infer that an IC is true by looking at an instance.
○ An IC is a statement about all possible instances!
○ From example, we know name is not a key, but the assertion that sid

is a key is given to us.
● Key and foreign key ICs are the most common; more general ICs

supported too.

20

Logical DB Design: ER to Relational

● Entity sets to tables:

21

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Relationship Sets to Tables

● In translating a relationship
set to a relation, attributes of
the relation must include:
○ Keys for each participating

entity set (as foreign keys).
■ This set of attributes

forms a superkey for
the relation.

○ All descriptive attributes.

22

CREATE TABLE Works_In
(ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did)
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Review: Key Constraints

● Each dept has at most one
manager, according to the key
constraint on Manages.

23

Translation to
relational model?

 Translating ER Diagrams with Key Constraint

● Map relationship to a
table:
○ Note that did is the

key now!
○ Separate tables for

Employees and
Departments.

● Since each department
has a unique manager,
we could instead
combine Manages and
Departments

24

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Review: Participation Constraints

● Does every department have a manager?
○ If so, this is a participation constraint: the participation of

Departments in Manages is said to be total (vs. partial).
○ Every did value in Departments table must appear in a row of the

Manages table (with a non-null ssn value!)

25

Participation Constraints in SQL

● We can capture participation constraints involving one entity set in a
binary relationship, but little else (without resorting to CHECK
constraints).

26

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

 Review: Weak Entities

● A weak entity can be identified uniquely only by considering the primary
key of another (owner) entity.
○ Owner entity set and weak entity set must participate in a

one-to-many relationship set (1 owner, many weak entities).
○ Weak entity set must have total participation in this identifying

relationship set.

27

 Translating Weak Entity Sets

● Weak entity set and identifying relationship set are translated into a
single table.
○ When the owner entity is deleted, all owned weak entities must also

be deleted.

28

CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

● As in C++, or other PLs,
attributes are inherited.

● If we declare A ISA B, every
A entity is also considered to
be a B entity.

● Overlap constraints: Can Joe
be an Hourly_Emps as well
as a Contract_Emps entity?
(Allowed/disallowed)

● Covering constraints: Does
every Employees entity also
have to be an Hourly_Emps
or a Contract_Emps entity?
(Yes/no)

29

Review: ISA Hierarchies

Translating ISA Hierarchies to Relations

● General approach:
○ 3 relations: Employees, Hourly_Emps and Contract_Emps.

■ Hourly_Emps: Every employee is recorded in Employees. For
hourly emps, extra info recorded in Hourly_Emps (hourly_wages,
hours_worked, ssn); must delete Hourly_Emps tuple if referenced
Employees tuple is deleted).

■ Queries involving all employees easy, those involving just
Hourly_Emps require a join to get some attributes.

● Alternative: Just Hourly_Emps and Contract_Emps. Hourly_Emps: ssn,
name, lot, hourly_wages, hours_worked. Each employee must be in one of
these two subclasses.

30

Review: Binary vs. Ternary Relationships

● What are the additional
constraints in the 2nd
diagram?

31

Binary vs. Ternary Relationships (Contd.)

● The key constraints
allow us to combine
Purchaser with Policies
and Beneficiary with
Dependents.

● Participation
constraints lead to NOT
NULL constraints.

● What if Policies is a
weak entity set?

32

CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

CREATE TABLE Dependants (
pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

Views

● A view is just a relation, but we store a definition, rather than a set of
tuples.

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

● Views can be dropped using the DROP VIEW command.
○ How to handle DROP TABLE if there’s a view on the table?

■ DROP TABLE command has options to let the user specify

33

Views and Security

● Views can be used to present necessary information (or a summary), while
hiding details in underlying relation(s).
○ Given YoungStudents, but not Students or Enrolled, we can find

students s who have are enrolled, but not the cid’s of the courses they
are enrolled in.

34

Relational Model: Summary

● A tabular representation of data.
● Simple and intuitive, currently the most widely used.
● Integrity constraints can be specified by the DBA, based on application

semantics. DBMS checks for violations.
○ Two important ICs: primary and foreign keys
○ In addition, we always have domain constraints.

● Powerful and natural query languages exist.
● Rules to translate ER to relational model

35

