
ICT 5103: Database Design and 
Management

Lecture 7

Instructor: Samin Rahman Khan

Institute of Information and Communication and Technology
Bangladesh University of Engineering and Technology

1



Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

The slides were taken from the following chapter of the book

Chapter 7:  Normalization

http://www.db-book.com/


Outline

▪ Features of Good Relational Design

▪ Functional Dependencies

▪ Decomposition Using Functional Dependencies

▪ Normal Forms

▪ Functional Dependency Theory

▪ Algorithms for Decomposition using Functional Dependencies

▪ Decomposition Using Multivalued Dependencies 

▪ More Normal Form

▪ Atomic Domains and First Normal Form

▪ Database-Design Process

▪ Modeling Temporal Data



Overview of Normalization



Features of Good Relational Designs

▪ Suppose we combine instructor and department into in_dep, which represents the natural join on the relations 
instructor and department

▪ There is repetition of information

▪ Need to use null values (if we add a new department with no instructors) 



A Combined Schema Without Repetition

▪ Consider combining relations 

• sec_class(sec_id, building, room_number) and 

• section(course_id, sec_id, semester, year) 

into one relation

• section(course_id, sec_id, semester, year, 
               building, room_number)

▪ No repetition in this case

Not all combined schemas result in repetition of information



Decomposition

▪ The only way to avoid the repetition-of-information problem in the in_dep schema is to 
decompose it into two schemas – instructor and department schemas.

▪ Not all decompositions are good.  Suppose we decompose

       employee(ID, name, street, city, salary)  

       into

       employee1 (ID, name)

       employee2 (name, street, city, salary)

      The problem arises when we have two employees with the same name

▪ The next slide shows how we lose information -- we cannot reconstruct the original 
employee relation -- and so, this is a lossy decomposition.



A Lossy Decomposition



Lossless Decomposition

▪ Let R be a relation schema and let R1 and R2 form a decomposition of 
R . That is R = R1  U R2

▪ We say that the decomposition is a lossless decomposition  if there 
is no loss of information by replacing  R with the two relation schemas 
R1  U R2 

▪ Formally,

             ∏ R1 (r)     ∏ R2 (r) = r

▪ And,  conversely a decomposition is lossy if

     r  ⊂  ∏ R1 (r)     ∏ R2 (r) = r 



Example of Lossless Decomposition 

▪ Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)



Normalization Theory

▪ Decide whether a particular relation R is in “good” form.

▪ In the case that a relation R is not in “good” form, decompose it into  set of relations {R1, 
R2, ..., Rn} such that 

• Each relation is in good form 

• The decomposition is a lossless decomposition

▪ Our theory is based on:

• Functional dependencies

• Multivalued dependencies



Functional Dependencies

▪ There are usually a variety of constraints (rules) on the data in the real 
world.

▪ For example, some of the constraints that are expected to hold  in a 
university database are:

• Students and instructors are uniquely identified by their ID.

• Each student and instructor has only one name.

• Each instructor and student is (primarily) associated with only one 
department.

• Each department has only one value for its budget, and only one 
associated building.



Functional Dependencies (Cont.)

▪ An instance of a relation that satisfies all such real-world constraints is called a  
legal instance of the relation;

▪  A legal instance of a database is one where all the relation instances are legal 
instances

▪ Constraints on the set of legal relations.

▪ Require that the value for a certain set of attributes determines uniquely the value 
for another set of attributes.

▪ A functional dependency is a generalization of the notion of a key.



Functional Dependencies Definition 

▪ Let R be a relation schema
α ⊆ R  and  β ⊆ R

▪ The functional dependency
 α → β

holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and 
t2 of r agree on the attributes α, they also agree on the attributes β.  That is, 

 t1[α] = t2 [α]   ⇒   t1[β ]  = t2 [β ] 

▪ Example:  Consider r(A,B ) with the following instance of r.

▪ On this instance, B → A hold;  A → B does NOT hold, 

1 4
1     5
3     7



Closure of a Set of Functional Dependencies

▪ Given a set F set of functional dependencies, there are certain other functional 
dependencies that are logically implied by F.

•  If  A → B and  B → C,  then we can infer that A → C

• etc.

▪ The set of all functional dependencies logically implied by F is the closure of F.

▪ We denote the closure of F by F+.



Keys and Functional Dependencies

▪ K is a superkey for relation schema R if and only if K → R

▪ K is a candidate key for R if and only if 

• K → R, and

• for no α ⊂ K, α → R

▪ Functional dependencies allow us to express constraints that cannot be expressed 
using superkeys.  Consider the schema:

      in_dep (ID, name, salary, dept_name, building, budget ).

We expect these functional dependencies to hold:

                          dept_name→ building

                               ID 🡪 building

but would not expect the following to hold: 

dept_name → salary



Use of Functional Dependencies

▪ We use functional dependencies to:

• To test relations to see if they are legal under a given set of functional dependencies. 

▪  If a relation r is legal under a set F of functional dependencies, we say that r 
satisfies F.

• To specify constraints on the set of legal relations

▪ We say that F holds on R if all legal relations on R satisfy the set of functional 
dependencies F.

▪ Note:  A specific instance of a relation schema may satisfy a functional dependency even if 
the functional dependency does not hold on all legal instances.  

• For example, a specific instance of instructor may, by chance, satisfy 
               name → ID.



Trivial Functional Dependencies

▪ A functional dependency is trivial if it is satisfied by all instances of 
a relation

▪ Example:

•  ID, name → ID

•  name → name

▪ In general, α → β is trivial if β ⊆ α 
 



Lossless Decomposition

▪ We can use functional dependencies to show when certain 
decomposition are lossless.  

▪ For the case of R = (R1, R2), we require that for all possible relations r 
on schema R
r = ∏R1 (r )    ∏R2 (r ) 

▪ A decomposition of R into R1 and R2 is lossless decomposition  if at 
least one of the following dependencies is in F+:

• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

▪ The above functional dependencies are a sufficient condition for 
lossless join decomposition; the dependencies are a necessary condition 
only if all constraints are functional dependencies



Example

▪ R = (A, B, C)
F = {A → B, B → C)

▪ R1 = (A, B),   R2 = (B, C)

• Lossless decomposition:

        R1  ∩ R2 = {B}  and B → BC

▪ R1 = (A, B),   R2 = (A, C)

• Lossless decomposition:

             R1  ∩ R2 = {A}  and A → AB

▪ Note:

•  B → BC 

         is a shorthand notation for 

•  B → {B, C}



Dependency Preservation

▪ Testing functional dependency constraints each time the database is updated can 
be costly

▪ It is useful to design the database in a way that constraints can be tested 
efficiently.  

▪ If testing a functional dependency can be done by considering just one relation, 
then the cost of testing this constraint is low

▪ When decomposing a relation it is possible that it is no longer possible to do the 
testing without having to perform a Cartesian Produced.

▪ A decomposition that makes it computationally hard to enforce functional 
dependency is said to be NOT dependency preserving.



Dependency Preservation Example

▪ Consider a schema:

         dept_advisor(s_ID, i_ID, department_name)

▪ With function dependencies:

             i_ID → dept_name

             s_ID, dept_name → i_ID

▪ In the above design we are forced to repeat the department name once for each 
time an instructor participates in a dept_advisor relationship.  

▪ To fix this, we need to decompose dept_advisor

• (s_ID, i_ID), (i_ID, dept_name)

▪ Any decomposition will not include all the attributes in

            s_ID, dept_name → i_ID

▪ Thus, the composition NOT be dependency preserving 



Normal Forms



First Normal Form

▪ Domain is atomic if its elements are considered to be indivisible units

• Examples of non-atomic domains:

▪ Set of names, composite attributes

▪ Identification numbers like CS101  that can be broken up into parts

▪ A relational schema R is in first normal form if the domains of all attributes of R are atomic

▪ Non-atomic values complicate storage and encourage redundant (repeated) storage of data

• Example:  Set of accounts stored with each customer, and set of owners stored with each 
account

• We assume all relations are in first normal form (and revisit this in Chapter 22: Object 
Based Databases)



First Normal Form (Cont.)

▪ Atomicity is actually a property of how the elements of the domain are used.

• Example: Strings would normally be considered indivisible 

• Suppose that students are given roll numbers which are strings of the form 
CS0012 or EE1127

• If the first two characters are extracted to find the department, the domain of 
roll numbers is not atomic.

• Doing so is a bad idea: leads to encoding of information in application program 
rather than in the database.



Second Normal Form

A functional dependency α → β is called a partial dependency if there is a 
proper subset γ of α such that γ → β; we say that β is partially dependent 
on α. A relation schema R is in second normal form (2NF) if each attribute 
A in R meets one of the following criteria:

• It appears in a candidate key.

• It is not partially dependent on a candidate key.

It can be shown that every 3NF schema is in 2NF. (Since, every partial 
dependency is a transitive dependency.)



Boyce-Codd Normal Form

▪ A relation schema R is in BCNF with respect to a set F of functional  
dependencies if for all functional dependencies in F+ of the form 

                 α → β

      where α ⊆ R and β ⊆ R, at least one of the following holds:

• α → β  is trivial (i.e., β ⊆ α)

• α is a superkey for R



Boyce-Codd Normal Form (Cont.)

▪ Example schema  that is not  in BCNF:

          in_dep (ID, name, salary, dept_name, building, budget )

      because :

• ID→name, dept_name, salary ; dept_name→building, budget

▪ holds on in_dep but 

▪ dept_name is not a superkey

▪ When decompose  in_dept  into instructor and department 

• instructor  is in BCNF

• department is in BCNF



Decomposing a Schema into BCNF

▪ Let  R be a schema R  that is not in BCNF.  Let α →β   be the FD 
that causes a violation of BCNF.

▪ We decompose R into:
• (α U β )
• ( R - ( β - α ) )

▪ In our example of in_dep, 
• α = dept_name
• β = building, budget
and in_dep is replaced by
•  (α U β ) = ( dept_name, building, budget )
• ( R - ( β - α ) ) = ( ID, name, dept_name, salary )



Example

▪ R = (A, B, C)
F = {A → B, B → C)

▪ R1 = (A, B),   R2 = (B, C)

• Lossless-join decomposition:

 R1  ∩ R2 = {B}   and B → BC

• Dependency preserving

▪ R1 = (A, B),   R2 = (A, C)

• Lossless-join decomposition:

 R1  ∩ R2 = {A} and A → AB

• Not dependency preserving 
(cannot check B → C without computing R1     R2)



BCNF and Dependency Preservation

▪ It is not always possible to achieve both BCNF and dependency preservation 

▪ Consider a schema:

         dept_advisor(s_ID, i_ID, department_name)

▪ With function dependencies:

             i_ID → dept_name

             s_ID, dept_name → i_ID

▪ dept_advisor is not in BCNF 

•  i_ID  is not a superkey.

▪ Any decomposition  of dept_advisor will not include all the attributes in

            s_ID, dept_name → i_ID

▪ Thus, the composition is  NOT be dependency preserving



Third Normal Form

▪ A relation schema R is in third normal form (3NF) if for all:

α → β in F+

 

at least one of the following holds:

• α → β is trivial (i.e., β ∈ α)

• α is a superkey for R

• Each attribute A in β – α is contained in a candidate key for R.

   (NOTE: each attribute may be in a different candidate key)

▪ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions 
above must hold).

▪ Third condition is a minimal relaxation of BCNF to ensure dependency 
preservation (will see why later).



3NF Example

▪ Consider a schema:

         dept_advisor(s_ID, i_ID, dept_name)

▪ With function dependencies:

             i_ID → dept_name

             s_ID, dept_name → i_ID

▪ Two candidate keys =  {s_ID, dept_name}, {s_ID, i_ID }

▪ We have seen before that dept_advisor is not in BCNF

▪ R,  however,  is in  3NF

•  s_ID, dept_name is a superkey

•  i_ID → dept_name  and  i_ID is NOT a superkey, but:

▪ { dept_name} – {i_ID }  =   {dept_name } and

▪ dept_name  is contained in a  candidate key



Redundancy in 3NF

▪ Consider  the schema R below,  which is in 3NF

▪ What is wrong with the table?

• R = (J, K, L )
• F = {JK → L, L → K }
• And an instance table:

• Repetition of information
• Need to use null values (e.g., to represent the relationship l2, k2 
     where there is no corresponding value for J)



Comparison of BCNF and 3NF

▪ Advantages to 3NF over BCNF.  It is always possible to obtain a 3NF 
design without sacrificing losslessness or dependency preservation. 

▪ Disadvantages to 3NF. 

• We may have to use null values to represent some of the possible 
meaningful relationships among data items.

•  There is the problem of repetition of information.

https://www.quora.com/What-is-an-example-of-a-table-which-is-in-2NF-but-not-3NF

https://stackoverflow.com/questions/23681453/finding-a-relation-in-3nf-but-not-in-bcnf

https://www.quora.com/What-is-an-example-of-a-table-which-is-in-2NF-but-not-3NF
https://stackoverflow.com/questions/23681453/finding-a-relation-in-3nf-but-not-in-bcnf


Goals of Normalization

▪ Let R be a relation scheme with a set F of functional dependencies.

▪ Decide whether a relation scheme R is in “good” form.

▪ In the case that a relation scheme R is not in “good” form, need to 
decompose it into a set of relation scheme  {R1, R2, ..., Rn} such that:

• Each relation scheme is in good form 

• The decomposition is a lossless decomposition

• Preferably, the decomposition should be dependency preserving.



How good is BCNF?

▪ There are database schemas in BCNF that do not seem to be sufficiently normalized 

▪ Consider a relation 

inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and can have multiple children

• Instance of inst_info



▪ It is better to decompose inst_info into:

• inst_child:

• inst_phone:

▪ This suggests the need for higher normal forms, such as Fourth Normal 
Form (4NF), which we shall see later

Higher Normal Forms 



Functional-Dependency Theory



Functional-Dependency Theory Roadmap

▪ We now consider the formal theory that tells us which functional dependencies are 
implied logically by a given set of functional dependencies.

▪ We then develop algorithms to generate lossless decompositions into BCNF and 
3NF

▪ We then develop algorithms to test if a decomposition is dependency-preserving



Closure of a Set of Functional Dependencies

▪ Given a set F set of functional dependencies, there are certain other functional dependencies 
that are logically implied by F.

•  If  A → B and  B → C,  then we can infer that A → C

• etc.

▪ The set of all functional dependencies logically implied by F is the closure of F.

▪ We denote the closure of F by F+.



Closure of a Set of Functional Dependencies

▪ We can compute F+, the closure of F, by repeatedly applying Armstrong’s Axioms:

• Reflexive rule: if β ⊆ α, then α → β  

• Augmentation  rule: if α → β, then γ α →  γ β

• Transitivity rule:  if α → β, and β → γ, then α →  γ

▪ These rules are 

• Sound -- generate only functional dependencies that actually hold,  and 

• Complete  -- generate all functional dependencies that hold.



Example of  F+

▪ R = (A, B, C, G, H, I)
F = { A → B

 A → C
CG → H
CG → I
 B → H}

▪ Some members of F+

• A → H        

▪ by transitivity from A → B and B → H

• AG → I       

▪ by augmenting A → C with G, to get AG → CG 
                   and then transitivity with CG → I 

• CG → HI     

▪ by augmenting CG → I to infer CG → CGI, 

    and augmenting of CG → H to infer CGI → HI, 

                         and then transitivity



Closure of Functional Dependencies (Cont.)

▪ Additional rules:

• Union rule: If α → β holds and α → γ holds,  then α → β γ holds.

• Decomposition rule: If α → β γ holds, then α → β  holds and α → γ holds.

• Pseudotransitivity rule:If α → β  holds and γ β → δ holds, then α γ → δ 
holds.

▪ The above rules can be inferred from Armstrong’s axioms.



Procedure for Computing F+

▪ To compute the closure of a set of functional dependencies F:

         F + = F
    repeat

for each functional dependency f in F+

       apply reflexivity and augmentation rules on f
       add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

       if f1 and f2 can be combined using transitivity
             then add the resulting functional dependency to F +

       until F + does not change any further

▪  NOTE:  We shall see an alternative procedure for this task later



Closure of Attribute Sets

▪ Given a set of attributes α, define the closure of α under F (denoted by α+) as 
the set of attributes that are functionally determined by α under F

▪  Algorithm to compute α+, the closure of α under F

      result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then  result := result ∪ γ 
end



Example of Attribute Set Closure

▪ R = (A, B, C, G, H, I)
▪ F = {A → B

A → C 
CG → H
CG → I
B → H}

▪ (AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

▪ Is AG a candidate key?  
1. Is AG a super key?

1. Does AG → R? == Is R ⊇ (AG)+ 

2. Is any subset of AG a superkey?
1. Does A → R? == Is R ⊇ (A)+   

2. Does G → R? == Is R ⊇ (G)+ 

3. In general: check for each subset of size n-1



Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

▪ Testing for superkey:

• To test if α is a superkey, we compute α+, and check if α+ contains all attributes of 
R.

▪ Testing functional dependencies

• To check if a functional dependency α → β holds (or, in other words, is in F+), just 
check if β ⊆ α+. 

• That is, we compute α+ by using attribute closure, and then check if it contains β. 

• Is a simple and cheap test, and very useful

▪ Computing closure of F

• For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ+, we output a 
functional dependency γ → S.



Multivalued Dependencies



Multivalued Dependencies (MVDs)

▪ Suppose we record names of children, and phone numbers for instructors:

• inst_child(ID, child_name)

• inst_phone(ID, phone_number)

▪ If we were to combine these schemas to get

• inst_info(ID, child_name, phone_number)

• Example data:
(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

▪ This relation is in BCNF

• Why?



Multivalued Dependencies

▪ Let R be a relation schema and let α ⊆ R and β ⊆ R.   The 
multivalued dependency 

α →→ β
holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 
in r such that t1[α] = t2 [α], there exist tuples t3 and t4 in r such that: 
 t1[α] = t2 [α] = t3 [α] = t4 [α] 
 t3[β]         =  t1 [β] 
 t3[R  – β] =  t2[R  – β] 
 t4 [β]         =  t2[β] 
 t4[R  – β] =  t1[R  – β] 



MVD -- Tabular representation 

▪ Tabular representation of α →→ β



MVD (Cont.)

▪ Let R be a relation schema with a set of attributes that are partitioned into 
3 nonempty subsets.

Y, Z, W

▪ We say that Y →→ Z (Y multidetermines Z )
if and only if for all possible relations r (R )

< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r

then

< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r

▪ Note that since the behavior of Z and W are identical it follows that 

Y →→ Z if Y →→ W 



Example

▪ In our example:

ID →→ child_name
ID →→ phone_number

▪ The above formal definition is supposed to formalize the notion that given a particular 
value of Y (ID) it has associated with it a set of values of Z (child_name) and a set of values 
of W (phone_number), and these two sets are in some sense independent of each other.

▪ Note: 

• If Y → Z  then  Y →→ Z

• Indeed we have (in above notation) Z1 = Z2
The claim follows.



Use of Multivalued Dependencies

▪ We use multivalued dependencies in two ways: 

1. To test relations to determine whether they are legal under a given set of functional 
and multivalued dependencies

2. To specify constraints on the set of legal relations.  We shall concern ourselves only 
with relations that satisfy a given set of functional and multivalued dependencies.

▪ If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r′  
that does satisfy the multivalued dependency by adding tuples to r. 



Theory of MVDs

▪ From the definition of multivalued dependency, we can derive the following 
rule:

• If α → β, then α →→ β
That is, every functional dependency is also a multivalued dependency

▪ The closure D+ of D is the set of all functional and multivalued 
dependencies logically implied by D. 

• We can compute D+ from D, using the formal definitions of functional 
dependencies and multivalued dependencies.

• We can manage with such reasoning for very simple multivalued 
dependencies, which seem to be most common in practice



Fourth Normal Form

▪ A relation schema R is in 4NF with respect to a set D of functional and 
multivalued dependencies if for all multivalued dependencies in D+ of 
the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following 
hold:

• α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)

• α is a superkey for schema R

▪ If a relation is in 4NF it is in BCNF



Restriction of Multivalued Dependencies

▪ Let R be a relation schema, and let R1, R2, ..., Rn be a decomposition of R.
▪ The restriction of  D to Ri is the set Di consisting of

• All functional dependencies in D+ that include only attributes of Ri

• All multivalued dependencies of the form

   α →→ (β ∩ Ri)

    where α ⊆ Ri  and  α →→ β is in D+ 



4NF Decomposition Algorithm

     result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

      while (not done) 
    if (there is a schema Ri in result that is not in 4NF) then
       begin

 let α →→ β be a nontrivial multivalued dependency that holds
            on Ri such that α → Ri  is not in Di, and α∩β=φ; 
          result :=  (result - Ri) ∪ (Ri - β)  ∪ (α, β); 
       end
    else done:= true;

      Note: each Ri is in 4NF, and decomposition is lossless-join



Example

▪ R =(A, B, C, G, H, I)
F ={ A →→ B

B →→ HI
CG →→ H }

▪ R is not in 4NF since A →→ B and A is not a superkey for R
▪ Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I)  (R2 is not in 4NF, decompose into R3 and R4)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I)  (R4 is not in 4NF, decompose into R5 and R6)
• A →→ B and B →→ HI 🡪 A →→ HI, (MVD transitivity), and
• and hence A →→ I (MVD restriction to R4)

e) R5 = (A, I)  (R5 is in 4NF)
f)R6 = (A, C, G)  (R6 is in  4NF)



Additional issues



Overall Database Design Process

▪ R could have been generated when converting E-R diagram to a set of tables.

▪ R could have been a single relation containing all attributes that are of interest 
(called universal relation).

▪ Normalization breaks R into smaller relations.

▪ R could have been the result of some ad hoc design of relations, which we then 
test/convert to normal form.

We have assumed schema R is given



ER Model and Normalization

▪ When an E-R diagram is carefully designed, identifying all entities correctly, the 
tables generated from the E-R diagram should not need further normalization.

▪ However, in a real (imperfect) design, there can be functional dependencies from 
non-key attributes of an entity to other attributes of the entity

• Example:  an employee entity with

▪  attributes 
   department_name and building, 

▪  functional dependency 
   department_name→ building

▪ Good design would have made department an entity

▪ Functional dependencies from non-key attributes of a relationship set possible, but 
rare --- most relationships are binary 



Denormalization for Performance

▪ May want to use non-normalized schema for performance

▪ For example, displaying prereqs along with course_id,  and title requires join of 
course with prereq

▪ Alternative 1:  Use denormalized relation containing attributes of course as well as 
prereq with all above attributes

• faster lookup

• extra space and extra execution time for updates

• extra coding work for programmer and possibility of error in extra code

▪ Alternative 2: use a materialized view defined a course      prereq

• Benefits and drawbacks same as above, except no extra coding work for 
programmer and avoids possible errors



Other Design Issues

▪ Some aspects of database design are not caught by normalization

▪ Examples of bad database design, to be avoided: 

Instead of earnings (company_id, year, amount ), use 

• earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, 
earnings).

▪ Above are in BCNF, but make querying across years difficult and needs new table 
each year

• company_year (company_id, earnings_2004, earnings_2005,  
earnings_2006)

▪ Also in BCNF, but also makes querying across years difficult and requires new 
attribute each year.

▪ Is an example of a crosstab, where values for one attribute become column names

▪ Used in spreadsheets, and in data analysis tools



Modeling Temporal Data

▪ Temporal data have an association time interval during which the data are 
valid.

▪ A snapshot is the value of the data at a particular point in time
▪ Several proposals to extend ER model by adding valid time to

• attributes, e.g., address of an instructor at different points in time
• entities, e.g., time duration when a student entity exists
• relationships, e.g., time during which an instructor was associated with 

a student as an advisor.
▪ But no accepted standard
▪ Adding a temporal component results in functional dependencies like

ID → street, city
not holding, because the address varies over time

▪ A temporal functional dependency  X → Y holds on schema R if the 
functional dependency X 🡪 Y holds on all snapshots for all legal instances r 
(R).



Modeling Temporal Data (Cont.)

▪ In practice, database designers may add start and end time attributes to relations

• E.g., course(course_id, course_title) is replaced by

     course(course_id, course_title, start, end)

• Constraint: no two tuples can have overlapping valid times

▪ Hard to enforce efficiently

▪ Foreign key references may be to current version of data, or to data at a point in time

• E.g., student transcript should refer to course information at the time the course was 
taken


