Institute of Information and Communication and Technology
Bangladesh University of Engineering and Technology

ICT 5103: Database Design and Management

Lecture 6
Instructor: Samin Rahman Khan

Relational Algebra

Chapter 4, Part A

© Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
- Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data set

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- Relational Algebra: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-operational, declarative.)

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited’ from names of fields in query input relations.

Sailors(sid: integer, sname: string, rating: integer, age: real) Boats(bid: integer, bname: string, color: string) Reserves(sid: integer, bid: integer, day: date)

R1 | sid | $\underline{\text { bid }}$ | day |
| :---: | :---: | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| | 58 | 103 |
| $11 / 12 / 96$ | | |

S1	sid	sname	ting	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

S2 | sid | | sname | rating | age |
| :--- | :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 | |
| 31 | lubber | 8 | 55.5 | |
| 44 | guppy | 5 | 35.0 | |
| 58 | rusty | 10 | 35.0 | |

Relational Algebra

- Basic operations:
- Selection ($\boldsymbol{\sigma}$) Selects a subset of rows from relation.
- Projection ($\boldsymbol{\pi}$) Deletes unwanted columns from relation.
- Cross-product (\mathbf{X}) Allows us to combine two relations.
- Set-difference (一) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
- Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sname	rating	
yuppy	9	
lubber	8	
guppy	5	
rusty	10	

π sname, rating ${ }^{(S 2)}$

age
35.0
55.5

$\pi_{\text {age }}{ }^{(S 2)}$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$
\sigma_{\text {rating }>8}(S 2)
$$

sname	rating
yuppy rusty	9
10	

$\pi_{\text {sname,rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- `Corresponding' fields have the same type.
- What is the schema of the result?

sid	sname	rating	
age			
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$S 1 \cup S 2$

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names `inherited’ if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator: $\rho(\mathrm{C}(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), \mathrm{S} 1 \times \mathrm{R} 1)$

Joins

- Condition Join: $\quad R \bowtie_{C} S=\sigma_{C}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

Joins

- Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on all common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

- Let A have 2 fields, x and $y ; B$ have only field y :
- $\mathrm{A} / \mathrm{B}=\{\langle\mathrm{x}\rangle \mid \exists\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{A} \forall\langle\mathrm{y}\rangle \in \mathrm{B}\}$
- i.e., A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
- In general, x and y can be any lists of fields; y is the list of fields in B, and $\mathrm{x} y$ is the list of fields of A .

Examples of Division A/B

sno pno	pno	pno
s1 ${ }^{\text {p1 }}$	p2	p2
s1 p2	B1	p4
s1 p3		B2
s1 p4		
s2 p1	sno	
s2 p2	s1	
s3 p2	s2	sno
s4 p2	s3	s1
s4 ${ }^{\text {p }} 4$	s4	s4
A	A/B1	A/B2

Expressing A/B Using Basic Operator

- Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A/B, compute all x values that are not `disqualified' by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\quad \pi_{\mathrm{x}}\left(\left(\pi_{\mathrm{x}}(\mathrm{A}) \times \mathrm{B}\right)-\mathrm{A}\right)$
A/B: $\quad \pi_{\mathrm{x}}(\mathrm{A})-$ all disqualified tuple

Find names of sailors who've reserved \#103

- Solution 1: $\pi_{\text {sname }}\left(\left(\sigma_{\text {bid }=103}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
- Solution 2: $\quad \rho$ (Temp1, $\sigma_{\text {bid }=103}$ Reserves)
ρ (Temp2, Temp1 \bowtie Sailors)
$\pi_{\text {sname }}($ Temp2)
- Solution 3: $\quad \pi_{\text {sname }}\left(\sigma_{\text {bid }=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:

$$
\pi_{\text {sname }}\left(\left(\sigma_{\text {color=’'red' }} \text { Boats }\right) \bowtie \text { Reserves } \bowtie \text { Sailors }\right)
$$

- A more efficient solution:

$$
\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color='red }} \text { Boats }\right) \bowtie \text { Reserves }\right) \bowtie \text { Sailors }\right)
$$

A query optimizer can find this, given the first solution!

Find sailor who've reserved a red or a green boat

- Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$
\begin{aligned}
& \rho\left(\text { Tempboats, }\left(\sigma_{\text {color }=\text { 'red }} \vee \text { color='green }, \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempboats } \bowtie \text { Reserves } \bowtie \text { Sailors })
\end{aligned}
$$

- Can also define Tempboats using union! (How?)
- What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

- Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
$\rho\left(\right.$ Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color=’red }}\right.\right.$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\rho\left(\right.$ Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color='green" }}\right.\right.$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Find the names of sailors who've reserved all boats

- Uses division; schemas of the input relations to / must be carefully chose:

$$
\begin{aligned}
& \rho\left(\text { Tempsids, }\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

- To find sailors who've reserved all 'Interlake' boats:

$$
\ldots . . \quad \text { / } \pi_{\text {bid }}\left(\sigma_{\text {bname }}=\text { ' Interlaké }{ }^{\prime} \text { Boats }\right)
$$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.

