
ICT 5103: Database Design and
Management

Lecture 6

Instructor: Samin Rahman Khan

Institute of Information and Communication and Technology
Bangladesh University of Engineering and Technology

1

Relational Algebra

Chapter 4, Part A

© Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

2

Relational Query Languages

● Query languages: Allow manipulation and retrieval of data from a
database.

● Relational model supports simple, powerful QLs:
○ Strong formal foundation based on logic.
○ Allows for much optimization.

● Query Languages != programming languages!
○ QLs not expected to be “Turing complete”.
○ QLs not intended to be used for complex calculations.
○ QLs support easy, efficient access to large data set

3

Formal Relational Query Languages

● Two mathematical Query Languages form the basis for “real” languages
(e.g. SQL), and for implementation:
○ Relational Algebra: More operational, very useful for representing

execution plans.
○ Relational Calculus: Lets users describe what they want, rather

than how to compute it. (Non-operational, declarative.)

4

Preliminaries

● A query is applied to relation instances, and the result of a query is also a
relation instance.
○ Schemas of input relations for a query are fixed (but query will run

regardless of instance!)
○ The schema for the result of a given query is also fixed! Determined

by definition of query language constructs.
● Positional vs. named-field notation:

○ Positional notation easier for formal definitions, named-field notation
more readable.

○ Both used in SQL

5

Example Instances

● “Sailors” and “Reserves”
relations for our examples.

● We’ll use positional or named
field notation, assume that
names of fields in query results
are `inherited’ from names of
fields in query input relations.

6

Relational Algebra

● Basic operations:
○ Selection (σ) Selects a subset of rows from relation.
○ Projection (π) Deletes unwanted columns from relation.
○ Cross-product (✕) Allows us to combine two relations.
○ Set-difference (一) Tuples in reln. 1, but not in reln. 2.
○ Union (⋃) Tuples in reln. 1 and in reln. 2.

● Additional operations:
○ Intersection, join, division, renaming: Not essential, but (very!)

useful.
● Since each operation returns a relation, operations can be composed!

(Algebra is “closed”.)

7

Projection

● Deletes attributes that are not in
projection list.

● Schema of result contains exactly
the fields in the projection list, with
the same names that they had in the
(only) input relation.

● Projection operator has to eliminate
duplicates! (Why??)
○ Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

8

Selection

● Selects rows that satisfy
selection condition.

● No duplicates in result!
(Why?)

● Schema of result identical to
schema of (only) input
relation.

● Result relation can be the
input for another relational
algebra operation! (Operator
composition.)

9

Union, Intersection, Set-Difference

● All of these operations take two input
relations, which must be
union-compatible:
○ Same number of fields.
○ `Corresponding’ fields have the same

type.
● What is the schema of the result?

10

Cross-Product

● Each row of S1 is paired with each row of R1.
● Result schema has one field per field of S1 and R1, with field names

`inherited’ if possible.
○ Conflict: Both S1 and R1 have a field called sid.

○ Renaming operator: ρ(C(1→sid1,5→sid2), S1✕R1)
11

Joins

● Condition Join: R ⋈C S = σC(R ✕ S)

● Result schema same as that of cross-product.
● Fewer tuples than cross-product, might be able to compute more

efficiently
● Sometimes called a theta-join.

12

Joins

● Equi-Join: A special case of condition join where the condition c contains
only equalities.

● Result schema similar to cross-product, but only one copy of fields for
which equality is specified.

● Natural Join: Equijoin on all common fields.
13

Division

● Not supported as a primitive operator, but useful for expressing queries
like:

Find sailors who have reserved all boats.

● Let A have 2 fields, x and y; B have only field y:
○ A/B = {〈x〉|∃〈x,y〉∊ A ∀ 〈y〉∊ B }
○ i.e., A/B contains all x tuples (sailors) such that for every y

tuple (boat) in B, there is an xy tuple in A.
○ Or: If the set of y values (boats) associated with an x value (sailor) in

A contains all y values in B, the x value is in A/B.
● In general, x and y can be any lists of fields; y is the list of fields in B, and

x y is the list of fields of A.

14

Examples of Division A/B

15

Expressing A/B Using Basic Operator

● Division is not essential op; just a useful shorthand.
○ (Also true of joins, but joins are so common that systems implement

joins specially.)
● Idea: For A/B, compute all x values that are not `disqualified’ by some y

value in B.
○ x value is disqualified if by attaching y value from B, we obtain an xy

tuple that is not in A.

Disqualified x values: πX((πX(A) ✕ B) 一 A)

A/B: πX(A) − all disqualified tuple

16

Find names of sailors who’ve reserved #103

● Solution 1: πsname((σbid=103 Reserves) ⋈ Sailors)

● Solution 2: ρ (Temp1, σbid=103 Reserves)

ρ (Temp2, Temp1 ⋈ Sailors)

πsname(Temp2)

● Solution 3: πsname(σbid=103 (Reserves ⋈ Sailors))

17

Find names of sailors who’ve reserved a red boat

● Information about boat color only available in Boats; so need an extra join:

πsname((σcolor=’red’ Boats) ⋈ Reserves ⋈ Sailors)

● A more efficient solution:

 πsname(πsid((πbidσcolor=’red’Boats) ⋈ Reserves) ⋈ Sailors)

A query optimizer can find this, given the first solution!

18

Find sailor who’ve reserved a red or a green boat

● Can identify all red or green boats, then find sailors who’ve reserved one
of these boats:

ρ(Tempboats, (σcolor=’red’ ∨ color=’green’Boats))

πsname(Tempboats ⋈ Reserves ⋈ Sailors)

● Can also define Tempboats using union! (How?)
● What happens if ∨ is replaced by ∧ in this query?

19

Find sailors who’ve reserved a red and a green
boat

● Previous approach won’t work! Must identify sailors who’ve reserved red
boats, sailors who’ve reserved green boats, then find the intersection (note
that sid is a key for Sailors):

ρ(Tempred, πsid((σcolor=’red’Boats)⋈ Reserves))

ρ(Tempgreen, πsid((σcolor=’green’’Boats)⋈ Reserves))

πsname((Tempred ∩ Tempgreen) ⋈ Sailors)

20

Find the names of sailors who’ve reserved all
boats
● Uses division; schemas of the input relations to / must be carefully chose:

● To find sailors who’ve reserved all ‘Interlake’ boats:

21

 Summary

● The relational model has rigorously defined query languages that are
simple and powerful.

● Relational algebra is more operational; useful as internal representation
for query evaluation plans.

● Several ways of expressing a given query; a query optimizer should choose
the most efficient version.

22

