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Relational Query Languages

● Query languages: Allow manipulation and retrieval of data from a 
database.

● Relational model supports simple, powerful QLs: 
○ Strong formal foundation based on logic. 
○ Allows for much optimization. 

● Query Languages != programming languages! 
○ QLs not expected to be “Turing complete”. 
○ QLs not intended to be used for complex calculations. 
○ QLs support easy, efficient access to large data set
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Formal Relational Query Languages

● Two mathematical Query Languages form the basis for “real” languages 
(e.g. SQL), and for implementation: 
○ Relational Algebra: More operational, very useful for representing 

execution plans. 
○ Relational Calculus: Lets users describe what they want, rather 

than how to compute it. (Non-operational, declarative.)
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Preliminaries

● A query is applied to relation instances, and the result of a query is also a 
relation instance. 
○ Schemas of input relations for a query are fixed (but query will run 

regardless of instance!) 
○ The schema for the result of a given query is also fixed! Determined 

by definition of query language constructs. 
● Positional vs. named-field notation: 

○ Positional notation easier for formal definitions, named-field notation 
more readable. 

○ Both used in SQL
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Example Instances

● “Sailors” and “Reserves” 
relations for our examples. 

● We’ll use positional or named 
field notation, assume that 
names of fields in query results 
are `inherited’ from names of 
fields in query input relations.
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Relational Algebra

● Basic operations: 
○ Selection (σ) Selects a subset of rows from relation. 
○ Projection (π) Deletes unwanted columns from relation. 
○ Cross-product (✕) Allows us to combine two relations. 
○ Set-difference (一) Tuples in reln. 1, but not in reln. 2. 
○ Union (⋃) Tuples in reln. 1 and in reln. 2. 

● Additional operations: 
○ Intersection, join, division, renaming: Not essential, but (very!) 

useful. 
● Since each operation returns a relation, operations can be composed! 

(Algebra is “closed”.)
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Projection

● Deletes attributes that are not in 
projection list.

● Schema of result contains exactly 
the fields in the projection list, with 
the same names that they had in the 
(only) input relation. 

● Projection operator has to eliminate 
duplicates! (Why??) 
○ Note: real systems typically 

don’t do duplicate elimination 
unless the user explicitly asks 
for it. (Why not?)
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Selection

● Selects rows that satisfy 
selection condition. 

● No duplicates in result! 
(Why?) 

● Schema of result identical to 
schema of (only) input 
relation. 

● Result relation can be the 
input for another relational 
algebra operation! (Operator 
composition.)
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Union, Intersection, Set-Difference

● All of these operations take two input 
relations, which must be 
union-compatible: 
○ Same number of fields.  
○ `Corresponding’ fields have the same 

type. 
● What is the schema of the result?
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Cross-Product

● Each row of S1 is paired with each row of R1. 
● Result schema has one field per field of S1 and R1, with field names 

`inherited’ if possible. 
○ Conflict: Both S1 and R1 have a field called sid.

○ Renaming operator: ρ(C(1→sid1,5→sid2), S1✕R1)
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Joins

● Condition Join:  R ⋈C S = σC(R ✕ S)

● Result schema same as that of cross-product. 
● Fewer tuples than cross-product, might be able to compute more 

efficiently 
● Sometimes called a theta-join.
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Joins

● Equi-Join: A special case of condition join where the condition c contains 
only equalities.

● Result schema similar to cross-product, but only one copy of fields for 
which equality is specified. 

● Natural Join: Equijoin on all common fields.
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Division

● Not supported as a primitive operator, but useful for expressing queries 
like: 

Find sailors who have reserved all boats. 

● Let A have 2 fields, x and y; B have only field y: 
○ A/B =  {〈x〉|∃〈x,y〉∊ A ∀ 〈y〉∊ B }
○ i.e., A/B contains all x tuples (sailors) such that for every y 

tuple (boat) in B, there is an xy tuple in A. 
○ Or: If the set of y values (boats) associated with an x value (sailor) in 

A contains all y values in B, the x value is in A/B. 
● In general, x and y can be any lists of fields; y is the list of fields in B, and 

x y is the list of fields of A.
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Examples of Division A/B
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Expressing A/B Using Basic Operator

● Division is not essential op; just a useful shorthand. 
○ (Also true of joins, but joins are so common that systems implement 

joins specially.) 
● Idea: For A/B, compute all x values that are not `disqualified’ by some y 

value in B. 
○ x value is disqualified if by attaching y value from B, we obtain an xy 

tuple that is not in A. 

Disqualified x values: πX((πX(A) ✕ B) 一 A)

A/B: πX(A) − all disqualified tuple
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Find names of sailors who’ve reserved #103

● Solution 1:  πsname((σbid=103 Reserves) ⋈ Sailors) 

● Solution 2: ρ (Temp1, σbid=103 Reserves)

ρ (Temp2, Temp1 ⋈  Sailors) 

πsname(Temp2) 

● Solution 3: πsname(σbid=103 (Reserves ⋈ Sailors))
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Find names of sailors who’ve reserved a red boat

● Information about boat color only available in Boats; so need an extra join: 

πsname((σcolor=’red’ Boats) ⋈ Reserves ⋈ Sailors )

   

● A more efficient solution:

 πsname(πsid((πbidσcolor=’red’Boats) ⋈ Reserves) ⋈ Sailors)

A query optimizer can find this, given the first solution!
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Find sailor who’ve reserved a red or a green boat

● Can identify all red or green boats, then find sailors who’ve reserved one 
of these boats: 

ρ(Tempboats, (σcolor=’red’ ∨ color=’green’Boats))

πsname(Tempboats ⋈ Reserves ⋈ Sailors)   

● Can also define Tempboats using union! (How?)  
● What happens if ∨ is replaced by ∧ in this query?
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Find sailors who’ve reserved a red and a green 
boat

● Previous approach won’t work! Must identify sailors who’ve reserved red 
boats, sailors who’ve reserved green boats, then find the intersection (note 
that sid is a key for Sailors): 

ρ(Tempred, πsid((σcolor=’red’Boats)⋈ Reserves))

ρ(Tempgreen, πsid((σcolor=’green’’Boats)⋈ Reserves))

πsname((Tempred ∩ Tempgreen) ⋈ Sailors)
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Find the names of sailors who’ve reserved all 
boats
● Uses division; schemas of the input relations to / must be carefully chose:

● To find sailors who’ve reserved all ‘Interlake’ boats:
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 Summary

● The relational model has rigorously defined query languages that are 
simple and powerful.

● Relational algebra is more operational; useful as internal representation 
for query evaluation plans. 

● Several ways of expressing a given query; a query optimizer should choose 
the most efficient version.
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